
TinyLLaVA: A Framework of 
Small-scale Large Multimodal 

Models
 this paper focuses on designing and analyzing 

small-scale LMMs



Wider context before jumping 
into details of the paper

Similar model 
https://huggingface.co/spaces/HuggingFaceM4/idefics-8b

https://huggingface.co/spaces/qnguyen3/nanoLLaVA

https://huggingface.co/spaces/HuggingFaceM4/idefics-8b
https://huggingface.co/spaces/qnguyen3/nanoLLaVA


What is a LMM (Large multiModal Model)

● Beyond Single-Modality Limitations: 
○ Theory, more modalities the better
○ Holistic and contextually-aware approach to information processing.

● Takes in one or more types of data and transforms to another. 
● Understanding Through Fusion:

○ Don't just analyze each type of data independently.  
○ Learn relationships between modalities and merge insights in a process called "fusion".
○ Provides richer and nuanced understanding of the information.

● Using adapters vs training from scratch 
○ This paper discusses using adaptors
○ From scratch potentially better

■ Different designs 
■ More time to converge modalities



● It introduces recipes or methods to cook your own multimodal models 
● Uses small models for quicker responses, specific applications.
● The power of mixing modalities 

○ Humans can listens, see, touch, smell, taste 
○ A passion of mine is IOT, sensing the physical world.

■ So many sensors
● Hugging face has 10,000’s of trained models to use as ingredients

○ Specialised for specific purposes
○ General purpose

● GPU resources to fuse models low VS training from scratch.

Why did I want to read this paper



Why small when most people go large

● Small can perform as well as Large models with:
○ The right data
○ The right model
○ and/or more targeted to a domain.

● Helps the GPU poor run models fit for purpose

● Cheaper inference cost

● Faster response rates

● Serve more people on less(er) hardware



● Language models 
● TinyLlama (1.1B) 

■ pretrain on 3 trillion tokens
■ 90 days using 16 A100-40G GPUs  - to buy £ 320,000

● StableLM-2-1.6B(1.6B)
■ pre-trained on 2 trillion tokens

● Phi-2(2.7B)
■ Training tokens 1.4T tokens
■ GPUs: 96xA100-80G - to buy £1,920,000
■ Training time: 14 days

● Clip models (shared vision and text model that outputs shared vectors aka embeddings)
● CLIP(428M) 

○ ViT-L/14 Transformer architecture as an image encoder and uses a masked self-attention Transformer as a text encoder
● SigLIP (878M)

○ A SoViT Shape optimized Vision Transformer optimized for both width and depth, as well as the MLP size, achieves 
results that are competitive with larger models.

○ SOTA performance on, image classification, captioning, VQA, and zero-shot transfer, effective across a broad range of 
domains

A bit about the models used 

https://github.com/jzhang38/TinyLlama
https://github.com/jzhang38/TinyLlama
https://huggingface.co/microsoft/phi-2
https://huggingface.co/openai/clip-vit-large-patch14
https://huggingface.co/google/siglip-so400m-patch14-384


Model Size to VRAM estimate
To give a idea of vram size and what type of GPU they fit on

● 32bit precision (parameter size)
○ TinyLlama (1.1B): around 12GB of VRAM. Optimal training, 16GB+.
○ StableLM-2-1.6B(1.6B): 16GB of VRAM minimum, 24GB+
○ Phi-2(2.7B): Professional-grade GPUs 32GBVRAM+

● After 4-bit quantization (parameter size)
○ TinyLlama (1.1B): Potentially could fit within 4-6GB of VRAM.
○ StableLM-2-1.6B(1.6B): Might be possible to fit within 6-8GB of VRAM.
○ Phi-2(2.7B): Likely to still require around 8-12GB of VRAM



Graphics cards 



Language models vs the Clip models

● Language Model
○ Trained on language tokens only 
○ Language in and language out
○ Larger parameter sizes

● Clip Models (CLIP and SigLIP) aka Vision-Language Models
○ Language and image in and language out 
○ Smaller parameter sizes 
○ CLIP and SigLIP pre-trained on large datasets of image-text pairs to learn a shared 

embedding space.
○ CLIP uses a contrastive loss function, which serves as a defining characteristic.



The TinyLLava framework 



Model architecture

Trainable



The vision encoder

● Take in an image and output text 
embedding 
○ Trained to maximize the similarity of (image, text) 

pairs
● 2 types of encoders tested 

○ CLIP (Contrastive Language-Image Pre-training)
○ SigLP (shape-optimized model)

● Resolution input 
○ SigLP accepts higher res images 

● Vision tokens outputs
○ 729 for SigLP
○ 576 for CLIP

● Both transformer based like attention 
paper but..
○ vision transformer (ViT)

■ Encoder only 
○ Learns to associate text with matching images 

and disassociate text from non-matching images



The connector

● Purpose: Enables the language model to see
● The connector can be thought of as a translator 

○ Bridges the vision model to the language model
○ Converts the patch vectors into vectors that the language model understands

● Multi-layer perceptron



The LLM 

● Takes in visual and text embeddings and outputs text
● Each of the models TinyLlama (1.1B), StableLM-2-1.6B (1.6B), and Phi-2 

(2.7B) - are transformer-based language models.



The Training pipeline

○ Pre-training for Feature Alignment  first -> Supervised Fine-tuning last 



Base recipe vs Share recipe

In the share recipe, freeze the first 12 layers 
of the vision encoder and update the rest of 
the model. Additionally, initialize connector 
from the base’s pretrained counterpart.

In the base recipe, keep 
parameters of both the vision 
encoder and small-scale 
LLMfrozen and solely updating 
the connector.



The experiment setup 



Training datasets

● ShareGPT4V
○ Images passed through GPT4 and trained 

● LLaVA-1.5
○ LLaVA-Instruct-150K

https://sharegpt4v.github.io/
https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K


Training recipes

● 1st recipe (LLaVA-1.5)
○ Pre training 

■ Vision encoder and small-scale LLM frozen
■ Connector updated 

○ supervised fine-tuning
■ The vision encoder remains frozen
■ Connector and small-scale LLM updated
■ tune the model for one epoch with a learning rate of 2e-5 and a batch size of 128

● 2nd recipe (ShareGPTv4) 
○ Pre-training

■ The connector is initialized from the base recipe's pre-trained counterpart 
(LLaVA-1.5)

■ Vision encoder is partially updated
○ Supervised fine-tuning 

■ The vision encoder remains frozen
■ Connector and small-scale LLM are updated.
■ update the rest of the model for one epoch with learning rate of 2e-5 and a batch 

size of 256



Evaluation Benchmarks

●



The language and vision model ablation tests



The vision  and language model ablation tests



Mlp vs sampler 



Language model vs Training datasets ablation 



Training recipes vs language model ablations



TinyLLaVAs VS other models 



The code and how to use 

● https://github.com/DLCV-BUAA/TinyLLaVABench
○ [2024.03.10] Finetune scripts out!

https://github.com/DLCV-BUAA/TinyLLaVABench
https://github.com/DLCV-BUAA/TinyLLaVABench/blob/main/scripts/tiny_llava/finetune.sh


TinyLLaVA Competition 

● Similar but more popular 

○ https://github.com/vikhyat/moondream 

○ The website https://moondream.ai/

● Larger model that doesn't use a adaptor 
○ https://publications.reka.ai/reka-core-tech-report.pdf

https://www.youtube.com/redirect?event=video_description&redir_token=QUFFLUhqbUxocXpFd0J3dUNBMVVfb0MtSF9KX3RXZXM5UXxBQ3Jtc0tuenBWcE5zUzVpZDh4Z0JIZDFRa1M3c0lYZVZUX3ZRUFppMjlzU0t3OGxqRUxlTHJEdndxSmxNYm5lWXJyNU1TQm9jcWFtMV9YaXJIcFM2TjRqSWFKckVDb2JwQlpNWWpIRVQ0SnE5cmF3X3BHbDBvcw&q=https%3A%2F%2Fgithub.com%2Fvikhyat%2Fmoondream&v=oDGQrOlmC1s
https://moondream.ai/
https://publications.reka.ai/reka-core-tech-report.pdf

